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Abstract- Transient three-dimensional mixed convection of air in a differentially heated vertical cubic 
cavity rotating about a vertical axis through the cavity center is numerically investigated. The unsteady 
Navier-Stokes and energy equations were discretized by the power-law scheme and solved by the projection 
method. Results were obtained for the thermal and rotational Rayleigh and Taylor numbers all varied 
f rom 10 2 to 10 7, Effects of the centrifugal and Coriolis forces on the thermal buoyancy driven flow were 
examined in detail. Significant flow modification was noted when Ra~ > Ra or Ta > Ra. It was noted in a 
rotational buoyancy dominated flow that after the initial transient the main flow structure is characterized 
by a symmetric pair of longitudinal rolls with their axes parallel with the rotating axis of the cavity. The 
increase in the Coriolis force decelerates the flow near the walls and reduces the heat transfer. The local 
Nusselt number distributions on the hot and cold plates were more sensitive to the change in the driving 

forces than the space average Nusselt numbers. 

1. INTRODUCTION 

Natural convection in a differentially heated non- 
rotating enclosed space is often encountered in various 
technological applications such as solar energy collec- 
tion, cooling of microelectronic equipments, growing 
of single crystal from fluid phase, etc. It has been 
extensively studied and the detailed flow and thermal 
structures under various conditions are available in 
the literature. In the crystal growth application, the 
crucible is sometimes rotated to stabilize the buoyancy 
induced flow so that the growing crystal is of higher 
quality. As the enclosure is rotated, the flow in it is 
simultaneously afl%cted by the Coriolis and cen- 
trifugal forces as well as the thermal buoyancy. The 
resulting flow is expected to be rather complicated and 
is still poorly understood. 

In the past considerable attention was paid to the 
rotating Rayleigh-B6nard convection [1-7], that is, 
the convection in an infinite bounded horizontal layer 
of fluid subject to an unstable vertical temperature 
gradient, which rotates at constant angular speed 
about a vertical axis. From linear stability analysis for 
a high rotating speed, Niler and Bisshopp [1] noted 
that in the limit of large Taylor number, Ta, the vis- 
cous effects play an important role in a thin layer near 
the boundary and the critical Rayleigh number, Rac, 
for the onset of convection is independent of whether 
the boundaries are rigid or free. Numerical analysis 
conducted by Veronis [2] indicated that the Prandtl 
number exhibits significant effects on the flow and 
thermal structures For the limit of infinite Prandtl 
number, Ktippers and Lortz [3] showed that no stable 
steady-state convective flow exists if the Taylor num- 
ber exceeds a certain critical value. Rossby [4] exper- 

imentally observed the subcritical instability in a water 
layer for Ta > 5 × 104 andin  an air layer for Ta < 105. 
In addition, for water at Ra > 104 the Nusselt number 
was found to increase with the Taylor number. The 
opposite trend is the case for air. Besides, at a large 
Taylor number oscillatory convection is preferred in 
mercury. Based on the mean-field approximation, 
Hunter and Riahi [5] analytically showed the non- 
monotonic variation of the Nusselt number with the 
Taylor number. Linear stability analysis from Rud- 
raiah and Chandna [6] indicated that the critical Ray- 
leigh number was relatively sensitive to the method 
and rate of heating, Coriolis force and the nature of 
the bounding surfaces of the fluid layer. The analysis 
from Clever and Busse [7] suggests that the critical 
Rayleigh number for the onset of oscillatory motion 
is higher for the higher Taylor and Prandtl numbers. 

Another geometry of considerable interest is the 
flow in a bottom heated vertical closed circular cyl- 
inder rotating about its axis. Experiments for silicone 
oil carried out by Hudson and his coworkers [8, 9] 
indicated that the Nusselt number increases with the 
rotation rate. Steady axisymmetric numerical simu- 
lation was conducted by Chew [10], The onset of 
steady natural convection was shown by Buell and 
Catton [11 ] to be rather sensitive to the lateral thermal 
boundary condition. Pfotenhauer et al. [12] reported 
experimental results for the effects of the cylinder 
geometry on the onset of convection for the low tem- 
perature liquid helium. For water subject to the Ray- 
leigh number ranging from 106 to 2 × 101~ and Taylor 
number from 10 6 to  l012, Boubnov and Golitsyn [13] 
experimentally observed a ring pattern of convective 
flow resulting from the fluid spin-up and vertex inter- 
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NOMENCLATURE 

9 magnitude of gravity acceleration 
g gravitational acceleration vector 
H the length of the cavity 
i,j, k indices in the X, Y, Z directions 
m number of iterations 
n index of time step 
Nu local Nusselt number 
Nu space average Nusselt number 
P dimensionless pressure 
p thermodynamic pressure 
Pr Prandtl number, v/c~ 
Pm dimensional modified dynamic 

pressure 
Ra Rayleigh number, 9" fl" AT .  HS/(w)  
Ra,~ rotational Rayleigh number, 

~2H" fl" AT" H3/(voO 
T temperature 
Ta Taylor number, f~z H4/v 2 

TH temperature of the hot wall 
Tc temperature of the cold wall 
To initial fluid temperature, 

To = 0.5. ( T .  + TL) 
t, r dimensional and dimensionless time 

U, V, W dimensionless velocities in X, Y, Z 
directions 

U*, V*, W* dimensionless provisional 
velocities in X, Y, Z directions 

Vm,x dimensionless projected velocity 
magnitude on the selected plane 

V dimensionless velocity vector 
u, v, w dimensional velocities in x, y, z 

directions 
X, Y,Z dimensionless coordinate systems 
x,y, z dimensional coordinate systems. 

Greek symbols 
thermal diffusivity 

fl thermal expansion coefficient 
AT temperature difference between the hot 

and cold walls 
v kinematic viscosity 
f~ magnitude of angular rotation rate 

vector of angular rotation 
0 dimensionless temperature 
P0 air density at temperature To. 

actions between two adjacent vortices. Kirdyashkin 
and Distanov [14] found that a periodically changing 
rotation speed can result in periodical temperature 
changes throughout the entire liquid layer. The effects 
of the rotation on the natural convection in a vertical 
annulus with differentially heated vertical side walls 
were examined in detail by Busse and his colleagues 
[15 18]. Their results are relevant to the processes in 
stars and in the earth's core. In order to study the flow 
phenomena in a closed thermosyphons, steady three- 
dimensional free convection inside a long vertical rot- 
ating porous box with the bottom surface heated has 
been numerically studied by Zhao and Lock [19]. The 
effects of the thermal Rayleigh, rotating Rayleigh and 
Taylor numbers were examined. 

Experimental data for the Nusselt number in a top 
heated horizontal rectangular cavity of silicone oil 
rotating about a vertical axis passing through the 
center of the cavity were presented by Abell and Hud- 
son [20]. Hathaway and Somerville [21] conducted a 
three-dimensional and unsteady numerical simulation 
of an inclined rotating layer with the rotation vector 
tilted from the vertical. The tilting of the rotation 
vector was found to produce significant change in the 
flow structure. A combined theoretical, numerical and 
experimental study was presented by BOhler and Oer- 
tel [22] to investigate thermal convection in rotating 
rectangular shallow box heated from below. First, 
linear stability analysis was used to predict the onset 
of steady and oscillatory convection and three-dimen- 
sional flow configuration. Then, the numerical analy- 
sis predicted the change of the roll orientation with 

the Taylor number. Finally, the flow structures at 
various Rayleigh and Taylor numbers were visualized. 
Unusual flow circulation was experimentally observed 
by Condie and Griffiths [23] for a horizontal layer of 
water. 

The above literature review indicates that the early 
studies mainly focused on the effects of the rotation on 
the onset of convection and the overall heat transfer at 
supercritical Rayleigh numbers. The detailed pro- 
cesses on how the Coriolis and centrifugal forces affect 
the natural convection flow structure in differentially 
heated cavities are still not well understood. In this 
study, a transient three-dimensional numerical simu- 
lation will be carried out to enhance our under- 
standing on the rotating cavity flow. Attention will be 
paid to the effects of the Coriolis and centrifugal forces 
on the flow dominated by the thermal buoyancy, 
which receives relatively little attention in the litera- 
ture. 

2. MATHEMATICAL MODELING AND SOLUTION 
METHOD 

2.1. Mathematical model 
The schematic diagram of the physical system under 

investigation is depicted in Fig. 1. Initially at time 
t < 0, the vertical cubic cavity and inside air are both 
stationary and isothermal at To. At t >/0 the cavity is 
rotated at a constant angular speed ~ about an axis 
which is parallel with the side walls and is through the 
center of the cavity. Meanwhile, two opposite side 
walls are suddenly raised and lowered, respectively, to 
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Fig. 1. Schematic diagram of the physical system. 

two different but uniform temperatures To + A T/2 and 
T o - A T / 2 ,  while the other walls are thermally well 
insulated. Thus, the air flow inside the cavity is sim- 
ultaneously driven by the rotation and thermal buoy- 
ancies. By adopting the generalized Boussinesq 
approximation [24] in which the linear density vari- 
ation with temperature is considered in both the body 
force and centrifugal force terms, the thermal and 
rotational buoyancies and Coriolis force acting onto 
the flow are, respectively, equal to p o g ~ ( T - T o ) ,  
- -pof l (T--  T0)~ × (l~ × r) and - 2 p 0 ~  × V. The result- 
ing flow developmeat can be described as follows : 

&t 9v c~w 
+ ~  + Uzz = o (1) 9:c 

9u 9u ~u 9u 
9~ +u~+~+. 'N 

l~pm 
-- + v V 2 u +  2 ~ v - - ~ 2 x f l ( T - -  To) (2) 

p 9x 

&, 9v 9v 9v 

_ 1 9pro _ _ v V 2 v _ _ 2 ~ u _ _ f Z 2 y f l ( T _ _  To )  (3) 
p g y  

9w 0w 9w 9w 

_ 1 9pro + v V 2 w + g . f l ( T _ T o  ) (4) 
p 9z 

9T 9T 9T 9T 
97 +~g:~ +~Uy + w ~  = ~V~T (5) 

where 

9 2 9 2 9 2 

v ~ = g f i  + b77 + 9z~ 

and Pm is the motion pressure defined as 

9X -- ~X + P°flZx'  9y 
~P -4- po~Z y 
9y 

@m @ 
and Oz - 9z I-pog. 

The three velocity components u, v and w are defined 
on the coordinates x, y and z rotating with the cavity, 
as shown in Fig. 1. Note that the last two terms on the 
right hand side of equations (2) and (3), respectively, 
denote the momentum change of the flow due to the 
Coriolis force and the centrifugal force on a variable 
density fluid subject to temperature nonuniformity. 
The corresponding initial and boundary conditions 
are 

u = v = w = 0  a n d T = T 0  for allx, y,z t < 0  

t~>0 x = H / 2  u = v = w = O  T = T o - A T / 2  

x = - H/2 u = v = w = O T = To + AT/2  

y = + H / 2  u = v = w = O  O T / g y = O  

z =  + H/2 u = v = w = O d T / &  = O. (6) 

In terms of the following nondimensional variables 

X =  x / H  Y =  y / H  Z = z / H  z = t/(H2/oO 

u = u / ( ~ / H )  V = ~ / (~ /H)  W = w l ( ~ / H )  

0 = (T- -  To) /AT P = pm/(p~Z/H 2) 

Pr = v/~ Ra = gf lATH3 /(voO 

Rao, = ~ZHf lATH3/(v~)  Ta = ~ 2 H ' / v  2 (7) 

the governing equations, initial and boundary con- 
ditions become 

9U 9V 9W 
T ~ + U f + T 2 = o  (8) 

9U w g U  9 U + u ~ + v ~ +  

9P 
= - 9 ~ + P r V 2 U + 2 T a ° S P r V - R a o ~ X ' P r ' O  (9) 

9 V  9 V  ~ V  9 V  N+ugx+v~+w ~ 

9P 
= - 9 ~ + P r V Z V - 2 T a ° S P r ' U - R a ~ , Y ' P r ' O  (10) 

9W 9W 9W OW 
9~- + uT~ + vTf + Wgz 

3P 
- 9 Z  t - P r V 2 W + R a ' P r O  (11) 

90 90 V 90 w O O  
3-~ + U ~  + ~ + 9 z =  VZO (12) 

~ < 0  

T>~O 

U =  V= W = 0  a n d 0 = 0  for allX, Y,Z 

X = 0 . 5  U =  V= W = 0  0 = - 0 . 5  

X = - 0 . 5  U = V =  W = 0  0 = 0 . 5  

Y=  _+0.5 U =  V =  W = 0  OO/gY=O 

z=+o.5 u= v= w=o ~o/~z=o. 
(13) 
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The above formulation clearly indicates that the 
flow to be examined is governed by the Prandtl num- 
ber Pr, Taylor number Ta, thermal Rayleigh number 
Ra and rotational Rayleigh number Ra,o. Note that 
Ra~, = Ra.  (f~2H/9). Hence the rotational buoyancy 
becomes important when the rotating speed is high or 
when cavity dimension is large, that is when ffFH is 
much larger than 9. 

In addition to examining the time evolution of the 
velocity and temperature fields, results for the local 
and space-average Nusselt numbers Nu and Nu on 
the heated or cooled plates are important in thermal 
design and can be evaluated from 

Nu = - O0/~XI x= + 0.5 (14) 

Nu = Nu d Y d Z .  
0.5 0.5 

(15) 

2.2. Solution method 
The basic equations for the present three-dimen- 

sional unsteady rotating cavity flow were solved 
numerically. In particular, the power-law scheme [25] 
was used to discretize equations (8)-(12) on a stag- 
gered grid system with the pressure and temperature 
defined at the mesh centers. The resulting finite differ- 
ence equations were solved by the projection method 
[26]. To resolve the steep velocity and temperature 
gradients in the near-wall region, nonuniform grid 
was used. Specifically, the grid lines passing through 
the mesh centers in the X-, Y- and Z-directions were 
deployed as follows: X i = 1/2" [ ( i -  1)/it] LS- 1/2 for 
i < ic and Ximax+l_i= Xi for i > ic; ~ = 1 / 2 .  
[( j -1) / jo]*5-1/2  for J<Jc  and Y2m~x+~_i=~ 
for j  >j¢;  Zk = 1/2. [(k-- 1)/k~] ~5- 1/2 for k < k~ and 
Zkmax+~-k = Zk for k > k~, where imax, j~nax and kmax 
are, respectively, the total numbers of the gridlines in 
the X-, Y- and Z-directions ; ic,jc and k~ are the indices 
of the gridlines at X = Y = Z = 0. With those described 
above, the solution procedures are : 

(1) Explicitly evaluate the temperature from the 
energy equation. To ensure numerical instability, 
the time interval A~ must be less than 2 .Pr /  
MAX(U 2, V 2, W2). 

(2) Calculate the provisional velocities (U*, 
V*, W*) explicitly from the three momentum equations 
without the pressure gradient terms. 

(3) Compute the pressure from the Poisson equa- 
tion 

( u -  U*)/Ar = - # P / O X  

( V -  V*)/Az = - dP/O Y 
( w -  W*)/AT = - OP/OZ. 

(5) Repeat procedures 1~4 for each time step from 
the initiation of the transient to the steady state. The 
steady-state is considered to reach at the nth time step 
when 

MAX ,+ 1 (Wi,j.k -W~j,k)/MAX (W~4.~) ~< 1.0 × 10 -5 

andlNux=05--Nux=_05l ~< 1.0× 10 -3 

where W stands for U, V, W or 0. For cases without 
steady-state, calculation is continued until a statistical 
state is reached. 

In view of the complex flow to be simulated, strin- 
gent program tests should be conducted to verify the 
proposed solution method. First, computations were 
carried out for the limiting case of a nonrotating 
(~ = 0) vertical cavity. Our predicted steady local 
Nusselt numbers for various cases are in good agree- 
ment with the results of Bauman et al. [27], De Vahl 
Davis [28], Bajorek and Lloyd [29] and Hamady [30]. 
Next, tests were performed for a rotating cavity. Our 
predictions were compared with the experimental data 
of Hamady [30]. The agreement is reasonable, as 
exemplified in Fig. 2 for a typical case. Furthermore, 
results for the transient variation of the space-average 
Nusselt numbers on the hot wall Nu were compared 
with those of Fusegj et al. [31] in Fig. 3 for Ra = 104 
and 106 . Good agreement is noted for the entire tran- 
sient. Good agreement is also noted for other flow and 
thermal characteristics. Finally, a grid-independence 
test was conducted. Results from such test for a typical 
case of Ra = 102, Ta = 1 0  2 and Ra,,~ = 106 are dem- 
onstrated in Table 1. The difference of the predicted 
maximum local velocity magnitudes I UI . . . .  ] VI .... and 
I WImax in the three coordinate directions during the 
entire transient from the 30 x 30 x 30 and 40 x 40 x 40 
grids is less than 4.2%. Better agreement is obtained 
for Nu. The differences in Nu predicted from the 
30 x 30 x 30 and 40 × 40 × 40 grids are within 1% dur- 
ing the entire transient. Furthermore, results for the 
velocity and temperature profiles for another typical 
case with Ra = 106, Ta = 107 and Ra~ = 102 are 
shown in Fig. 4. Excellent agreement is noted in the 
results computed from the two different grids over the 
entire transients. Through these tests, the proposed 
numerical method is considered to be suitable for the 
present problem. 

V2P = (OU*/OX+ ~ V*/~ Y +  O W*/OZ)/Ar  

by the S. O. R. method. The converged pressure is 
reached at the mth iteration when 

MAX m+ l (IPi,j,k -PT.j, k l ) / M A X  ([P~Cfl J) ~< 1.0 × 10 -4. 

(4) The corrected velocity (U, V, W) was calculated 
by correcting the provisional velocities with the pres- 
sure gradient as 

3. RESULTS AND DISCUSSION 

As indicated in the problem formulation, the flow 
in a differentially heated rotating cavity is governed 
by the Prandtl number Pr, Rayleigh number Ra, 
rotational Rayleigh number Raw and Taylor number 
Ta. Although computation can be performed for any 
combination of these parameters, only the results 
required to illustrate the effects of the centrifugal and 
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Fig. 2. Verification of steady-state Nusselt number distribution of the hot and cold walls with and without 

rotation. 

Coriolis forces on the thermal buoyancy driven flow 
will be obtained in the present study. In particular, we 
consider air inside a rotating cubic cavity in which the 
rotational buoyancy and Coriolis force are sys- 
tematically varied, so that they eventually dominate 
the flow. Specifically, Pr is set at 0.7 for air; Ra, Ta 
and Rao~ are varied from 102 to 10 7. Only a small 
sample of the predicted results will be examined in 
the following. A del:ailed compilation of the complete 
results is available in our research report [32]. 

Before presenting the results for the flow driven by 
the interactive driving forces, the flow dominated by 
a single driving force is given first for comparison. 
Figure 5 shows the :~teady three-dimensional flow and 
temperature fields for a thermal buoyancy dominant 
situation with Ra = 10 6, Ra,o = 0 and Ta = 0 by plot- 
ting the velocity vectors and isotherms at selected 
planes, viewing from the insulated side walls of the 

cavity. The results indicate that the flow is mainly 
dominated by the strong upward and downward air 
streams, respectively, adjacent to the hot and cold 
walls, resulting in a strong clockwise flow circulation. 
The presence of the two insulated side walls in a cubic 
cavity was found to induce four weakly recirculating 
cells near the midheight of the cavity, which can be 
clearly seen by viewing the flow from the top. The 
resulting temperature field is of boundary-layer type 
and resembles that in a two-dimensional square cavity 
[28] except that there is some distortion in the iso- 
therms near the insulated side walls. The cor- 
responding local Nusselt number distributions on the 
hot and cold walls, not given here, showed that heat 
transfer is more effective in the lower portion of the 
hot plate and in the upper potion of the cold plate, in 
agreement with the directions of the boundary layer 
flow on these plates. 
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Fig. 4. Comparison of the velocity and temperature profiles 
along the X direction at line Y = 0 and Z = 0 computed 
from two different grids for a typical case Ra = 106, Ta = 10  7 

and Ra,., = 102. 

As  the  r o t a t i o n a l  b u o y a n c y  d o m i n a t e s  ove r  the  

t h e r m a l  b u o y a n c y  a n d  C o r i o l i s  force,  the  d r iven  ste- 

ady  f low s h o w n  in Fig.  6 for  Ra = 102, Ta = 102 a n d  

Ra,,  = l0  b is c h a r a c t e r i z e d  by  a p a i r  o f  e l o n g a t e d  ro l l s  

with their axes parallel with the rotating axis of the 
cavity, as clear by viewing the flow from the top. There 
is a strong stream of flow moving from the cold plate 
to hot plate near the insulated side walls. This unique 

Table I. Comparison of (a) the local maximum velocity magnitudes in three directions inside the cavity and (b) the space- 
average Nusselt numbers predicted from the 40 × 40 × 40 and 30 x 30 x 30 grid-systems for Ra = 102, Ta = 102, Ra~j = 106 

(a) 

[U [  . . . .  [ W[ .... .  [ W[max 

T 40 × 40 x 40 30 X 30 × 30 40 x 40 × 40 30 × 30 × 30 40 X 40 X 40 30 × 30 × 30 

0.05 136.19 130.54 94.13 94.24 22.51 22.08 
0.10 127.77 122.02 90.80 90.42 22.32 21.84 
0.15 124.99 119.48 89.87 89.15 22.26 21.75 
0.20 124.17 118.74 89.60 89.15 22.24 21.73 
S.S. 123.94 118.56 89.54 89.08 22.25 21.73 

(b) 
- -  m 
Nu at X = --0.5 Nu at X = 0.5 

T 40 x 40 x 40 30 x 30 × 30 40 x 40 x 40 30 × 30 x 30 

0.05 4.727 4.773 3.625 3.648 
0.10 4.152 4.182 3.834 3.866 
0.15 3.987 4.020 3.894 3.928 
0.20 3.939 3.971 3.912 3.945 
S.S. 3.926 3.956 3.9 t 6 3.949 
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Fig. 5. The velocity vector maps and isotherms in selected planes from the side view for Ra = 106, T a  = 0 
and Ra,~ = 0 at steady state. 
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Fig. 6. The w:locity vector maps and isotherms in selected planes from the top view for Ra = 10 z, Ta = 102 
and Ra,o = 106 at steady-state. 

flow structure results in the mushroom shape 
isotherms. In this ~'~a,, dominated flow, the local Nus- 
selt numbers are higher near the plane Y = 0 and 
lower near the insulated walls for the cold plate 
(X = 0.5), while they are lower at Y = 0 and higher 
near the insulated side walls for the hot  plate 
(X = - 0 . 5 ) .  For  a Coriolis force dominated situation 
the driven flow is rather weak with Vm,x < 0.07 for 
Ra = 102, Ra,, = 10 z and Ta = 106. 

3.1. Effects o f  cemr(fuyal force on thermal buoyancy 
driven f low 

To investigate the condition under which the cen- 
trifugal force exhibits significant influences on the flow 
driven by the thermal buoyancy, computat ion was 
performed for cases with Ra fixed at 106, Ta at l 0  2 

and Ra,, increased from 10 2 to the level at which the 
flow is dominated by the rotational buoyancy. For  
these cases the flow was found to reach steady-state 
after the transient stage. The predicted results, when 
contrasted with those in Figs. 5 and 6, suggested that 
the flow is dominated by the thermal buoyancy for 
Ra,, <~ 105. The effects of  the centrifugal force on the 

flow are rather slight. It is of  interest to point out that 
the centrosymmetry of  the flow is broken by this weak 
rotational buoyancy. As Raw is raised t o  10 6 , the 
steady flow shown in Fig. 7 is still dominated by thermal 
buoyancy. Comparing these results with those for 
Ra = 10  6 and Ra,,, = Ta = 0 in Fig. 5 reveals that in 
the cavity core the flow is strengthened to a certain 
degree by the rotational buoyancy, while the reverse 
is the case near the isothermal plates. Besides, the 
rotational buoyancy causes the boundary layer thick- 
ness on the hot and cold plates to differ noticeably. 
Meanwhile, it was noted that the transient time for 
the flow to reach steady-state is longer for a higher 
Ra,,,. When Ra,,, is further raised t o  10 7, the flow 
becomes dominated by the rotational buoyancy, as 
supported by comparing Figs. 8 and 9 with Figs. 5 
and 6. Note  that at this higher Rao the driven flow is 
again mainly in the form of  a pair of  vortex rolls with 
their axes parallel with the rotating axis of  the cavity 
and is similar to those with Ra,o = 10 6, Ra = 102 and 
Ta = 102 in Fig. 6. 

Next,  the effects of  Ra,, on the local Nusselt number  
distribution on the hot  (X = - 0 . 5 )  and cold walls 
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(X = 0.5) are examined in Fig. 9 for T = 0.005 and for 
steady-state. The results indicate that at Ra,~ = 106 the 
Nusselt number distributions in Fig. 10a are some- 
what different from those for the thermal buoyancy 
driven flow, although the main flow structure is ther- 
mal buoyancy dominated, as discussed above. This is 
due to the fact that Nu is mainly affected by the flow 
near the hot  and cold walls. This near-wall flow is 
modified to some degree for Raw raised to 106 . Very 
different types of  Nusselt number distribution result 
for Rao~ further raised to 107 (Fig. 10b). These 
distributions are not similar to those dominated by 
the rotational buoyancy for Ra~o = 106 and 
Ra = Ta = 102, implying that for R a =  106 and 
Raoj = 10 v the rotational buoyancy does not  pre- 
dominate over the thermal buoyancy, particularly in 
the near-wall region. Although the rotational buoy- 

ancy exhibits significant influence on the local Nusselt 
number distribution, its effects on the space-average 
Nusselt number shown in Fig. 11 are slight, except in 
the initial transient. 

To further illustrate the interactive effects of  the 
thermal and rotational buoyancies on the flow, results 
for Ra,, fixed at 10 6 and Ta at 10 2 with Ra varied from 
10 2 to 10 7 are also examined. When Ra <~ 10 5, the 
flow was found to be mainly driven by the rotational 
buoyancy and its main structure is again in the form 
of a pair of  vertical rolls. At Ra = 10 6 the resulting 
flow is closer to that driven by the thermal buoyancy 
alone, as just discussed above. As Ra is raised to 
10 7, the flow is completely dominated by the thermal 
buoyancy. Checking the temporal flow evolution for 
different Ra reveals that the time for the flow to reach 
steady-state is shorter for a high Ra. In addition, sig- 
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nificant velocity overshoot is noted during the initial 
transient for Ra = 10 6 and 10 v. Unlike the rotational 
Rayleigh number, the thermal Rayleigh number 
shows significant influence on the space average Nus- 
selt number. A higher Nu results for a larger Ra. 

3.2. Effects of  Coriolis .force on thermal buoyancy 
driven flow 

The interaction of  the Coriolis force and the thermal 
buoyancy is investigated by examining the results for 
Ra fixed at 106 and Ta varied from 102 to 1 0  7 with a 
very small Ra,,( = 102). The predicted flow and tern- 

perature fields for Ra = 1 0  6, Ta <~ 105 and Ra,~ = 1 0  2 

suggest that the flow is close to those driven by the 
thermal buoyancy alone. The Coriolis force, though 
much smaller than the thermal buoyancy, does result 
in some modification in the flow and temperature 
fields. As Ta is raised to 106 with other parameters 
fixed at the same values, the resulting flow is found to 
be simultaneously affected by the thermal buoyancy 
and Coriolis force when the results in Figs. 12 and 13 
are compared with that in Fig. 5. Al though the flow 
structure from the side view is still similar to that in 
Fig. 5, the flow on the planes parallel with the hot  or 
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selected planes for Ra = 106, T a  =- 107 and Ra,.~ = 102 at steady-state. 

cold plate (the fronl: view) is substantially accelerated 
by the Coriolis force at Ta = 10 6 causing additional 
flow recirculation and distortion in the isotherms. It 
is also noted that the Coriolis force slightly accelerates 
the core flow to some degree. Besides, the boundary 
layers on the isothermal plates thicken slightly and the 
intrusion of the boundary layers along the horizontal 
walls is suppressed to the near-wall region for 
r a  = 10 6. Moreover, the time for the flow to reach 
steady-state is longer at increasing Coriolis force. For 
a further raise of Ta to 10 7 the flow becomes somewhat 
dominated and is :dgnificantly slowed down by the 

Coriolis force, as is clear by comparing Figs. 14 and 
15 with Fig. 5. The thermal buoyancy, however, still 
exhibits noticeable effects because it is not small for 
Ra = 106. From the top view in Fig. 14 the global main 
steady flow structure in this Coriolis force dominated 
situation is in the form of four unevenly spaced ver- 
tical rolls. Besides, the time to reach steady-state was 
found to be shorter when Ta is raised from 106 to 107, 
instead of being longer. 

The local Nusselt numbers displayed in Fig. 16 for 
various Ta indicate that increasing the Coriolis force 
significantly affects the local heat transfer from the 
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hot  and cold plates. The results for Ta = 105 and 10 7 

are not, respectively, close to that for pure thermal 
convection and that dominated by the Coriolis force. 
The time variations of  the space average Nusselt num- 
bers presented in Fig. 17 indicate that Nu is reduced 
by more than 50% when Ta is raised from 0 to 107. 
This obviously results from the weakening of  the ther- 
mal buoyancy driven flow near the hot  and cold plates 
by the Coriolis force, as is clear from the side views of  
the results in Figs. 5 and 14. 

4. CONCLUDING REMARKS 

Through a detailed three-dimensional time-accu- 
rate numerical simulation, the flow structure in a 
differentially heated vertical cubic cavity of  air is pre- 
dicted. The centrifugal and Coriolis forces were found 
to exhibit significant effects on the flow and heat trans- 
fer in the cavity when they are high enough. In the 
centrifugal force dominated convection, the flow is 
characterized by a pair of  vortex rolls with their axes 
parallel with the rotating axis of  the cavity, resulting 
in the mushroom like temperature contours. The rolls 
are rather elongated in the direction normal to the 
heated wall and are divided by the vertical plane 
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Fig. 17. The evolution of space-average Nusselt number for 
Ra = 106, Raoj = 102 and different Ta. 

Y = 0. It was also found that a thermal buoyancy 
driven flow is strengthened at increasing centrifugal 
force but weakened in the near-wall regions by the 
increasing Coriolis force. The space average heat 
transfer from the isothermal plates is substantially 
reduced by the Coriolis force but is insensitive to the 
centrifugal force. The effects of  the cavity inclination 
are unimportant  in a centrifugal force dominated flow. 
But it is expected to cause the flow to become unstable 
in the thermal buoyancy and Coriolis force dominated 
situation. This flow transition through the Hopfbi fur -  
cation will be explored later. 
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